Cavitation

與

NPSHa & NPSHr

之間的三角關係

周龍賓 機械技師 撰寫/報告

Taiwan Flux Technologies, Inc.

臺灣熱流科技股份有限公司

提 供

內容

壹 前言

貳 Cavitation 現象

參 離心泵發生 Cavitation 的特徵

肆 NPSH 定義的由來

伍 系統管路的 NPSHa

陸 離心泵的 NPSHr

柒 Cavitation 與 NPSHa & NPSHr

之間的三角關係

搁 液體溫度如何影響 NPSHa & NPSHr

玖 實驗量測 NPSHr 的方法

Α

流

1 2 3 4

臺

灣

熱

流

Α

В

C

D

Е

F

臺

灣

熱

流

壹. 前言

Cavitation 這字很難懂,一般英文字典裡查不到。大都只能查到Cave(穴洞)與Cavity(空洞)這兩字。若有機會查到,也無法靠字典裡的解釋了解這個字。教育部「機械工程名詞」裡把Cavitation 譯意為「孔蝕」。這譯詞很貼切,請大家多支持、多使用。在沒普遍使用之前,本文暫且使用英文原文,請大家多包涵。學術界與工程界也常用「空蝕」的譯詞,其實更好。但不幸被不明就裡的工程師們引申解釋為泵(抽水機)「抽空」,或說「抽到空氣」,甚至再引申為「空轉」。凡此種種,一概錯誤,且為無稽之論。

NPSH 也難懂!它是名詞片語 Net Positive Suction Head 中,四個英文單字的第1個字母合併而成的「名詞片語縮寫」,譯意為「淨正吸頭」。這個譯詞唸起來很拗口,大家都不喜歡唸;本文只好沿用學術界或工程界慣用的英文縮寫 NPSH。前述英文名詞片語中,Suction Head 易懂。多了 Positive 與 Net 兩字,就讓大家「面有難色」了!

NPSHr 是 Net Positive Suction Head Required (by the centrifugal pump to suppress Cavitation)之縮寫,意譯為「某離心泵為抑制 Cavitation發生所需之最小 NPSH 值」。

臺灣

熱

1 2 3 4

NPSHa 是 Net Positive Suction Head Available (for the centrifugal pump at installation)之縮寫,意譯為「某離心泵安裝在系統管路上運轉時,實際(有效)的 NPSH 值」。

臺

灣

熱

流

Α

В

C

D

Е

F

臺

灣

熱

流

根據前面的「名詞解譯」,很容易想通:

若 NPSHa > NPSHr,則 Cavitation 不發生。

這是個定律(Law)或定理(Theorem)!

但是:為何有 NPSH 這名詞定義?如何證明這定理呢? 且看下回分解。

貳. Cavitation 現象

Cavitation 是為描述一種現象而定義的名詞。該現象如下述:

泵運轉輸送液體時,若泵內部流場某處壓力低於該液體在該溫度的飽和蒸汽壓(Saturated Vapor Pressure,以下簡稱 Vapor Pressure,中文簡稱"蒸汽壓")時,液體將會在該處局部汽化(沸騰)而形成蒸汽泡。蒸汽泡在液體流場裡很像是液體內的空洞(Cavity)。液體流場中正在發生蒸汽泡,就像是正在產生一個個空洞般,英文就說成

The Liquid Flow Field is cavitating!或

The Liquid Flow Field is in a cavitating condition!

這 Cavitating Condition 就是 Cavitation 的意思。蒸汽泡隨周邊液體 流動,離開該處後,其周邊壓力又迅速上升至高於飽和蒸汽壓,蒸汽泡 В

С

D

E

F 臺灣熱

流

1 2 3 4

臺

灣

熱

流

В

C

D

Е

F

臺

灣

熱

流

又被急劇壓縮而破滅(凝結成液體)。蒸汽泡破滅的瞬間,蒸汽泡邊緣的液體分子突然衝入空洞內,被迫瞬間加速後,立即激烈撞擊該部位的固體表面(即泵的構成零件表面,如葉輪之葉片,或導葉片,或泵殼…等),引起局部很小範圍內「極高的壓力波」。學者 Hickling ^註 曾估算該壓力波可能高達 10⁴ atm。若蒸汽泡在某處一個個陸續形成,也將在破滅處一個個陸續破滅。因此,在蒸汽泡破滅處的固體表面將連續承受極高壓力波撞擊,此稱為「局部水鎚效應」。此現象有如無數支小尖錐以極高頻率「點擊」(Pitting)固體表面般。固體表面若長期承受這種「點擊」(Pitting),將引起疲勞破壞(Fatigue),而發生粒狀脫落(Particle Detachment)。 這種對固體材料表面的破壞機制(Destruction Mechanism)是屬於沖蝕磨耗模式(Erosion Mode of Wear),特別稱之為Cavitation Erosion —— 譯意為「孔蝕現象造成的沖蝕」。

參. 離心泵發生 Cavitation 的特徵

一. 噪音與振動

- 1. 噪音與振動肇因於前節所述之「蒸汽泡產生又迅速破滅」。
- 2. 愈大的泵發生 Cavitation 時,其噪音與振動愈明顯異常。
- 3. 若容許泵自入水管吸入空氣,可明顯降低該肇因於 Cavitation 之噪音與振動。

註:R. Hickling, and M. S. Plesset。

C

D

Е

4

臺

灣

熱

流

Α

В

C

D

Е

F

臺

灣

熱

流

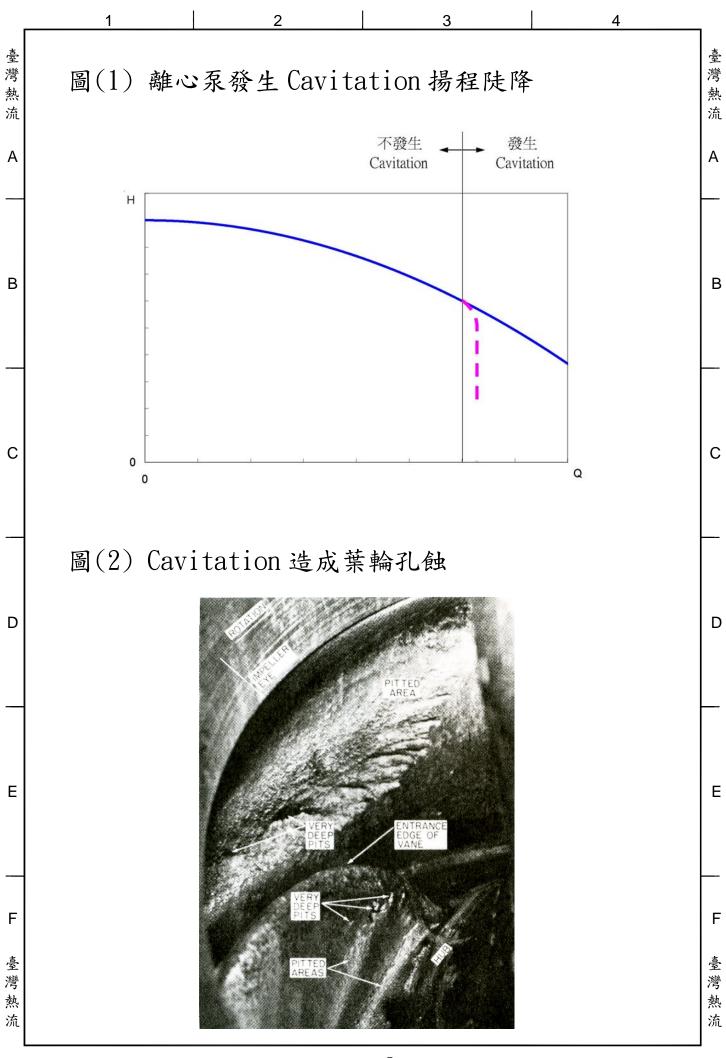
二. 揚程與制動馬力陡降

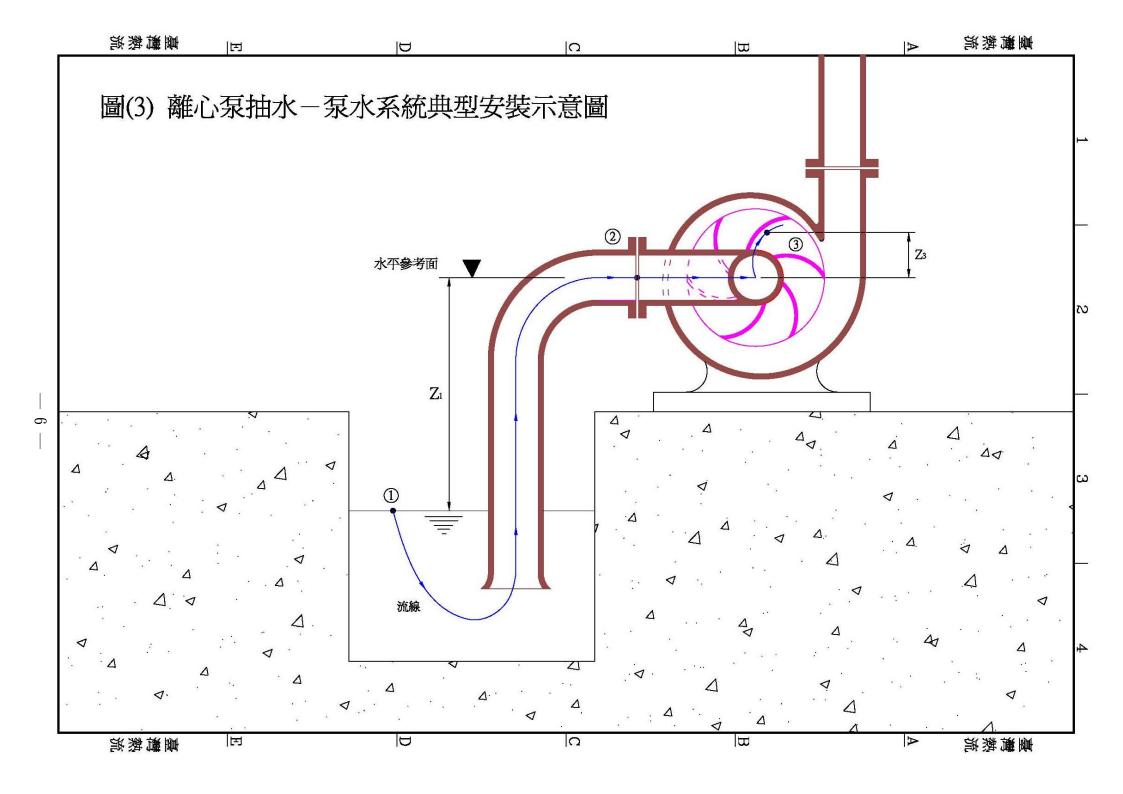
離心泵以定轉速運轉輸送液體時,未發生 Cavitation 之前,若流量率由小而逐漸增大,揚程是逐漸下降的。若增至某流量率而發生 Cavitation,泵之揚程與制動馬力(BHP)陡降,如圖(1)所示。

三. 葉輪孔蝕

離心泵葉輪孔蝕最常見於葉片的背面,但靠近葉輪眼(Impeller Eye,即入水口)。發生孔蝕的面積內呈現多孔狀,有如腐爛的海綿表面。甚至有些孔特別深。如圖(2)所示。若流量過大,孔蝕也會發生在葉片的正面,但在出水口處,以及泵渦卷殼的舌部(Tongue of Volute Casing)。

泵運轉發生 Cavitation 時,若容許自入水管吸入空氣,可明顯減緩或完全阻止葉輪孔蝕。


肆. NPSH 定義的由來


請看圖(3),是離心泵從低處水槽抽水的示意圖。

圖示流線 ① \rightarrow ② \rightarrow ③中,

①是水槽水面某點;②是泵入水管中心點;

F 臺灣熱流

1 2 3 4

③是泵內部流場中的壓力最低點。

列出流線上點②與點③之間的「流體能量方程式」

$$\frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Z_2 - h_{L2-3} = \frac{P_3}{\gamma} + \frac{V_3^2}{2g} + Z_3$$
 ①

熱

流

В

C

D

Е

F

臺

灣

熱

流

其中

P2與P3分別為點②與點③處的絕對壓力

V2與V3分別為點②與點③處的流動速度

Z₂ 與 Z₃ 分別是從點②與點③量到「任一水平參考面」的海拔高度 (Elevation)。

h L2-3 為沿著流線從點②流到點③的流動頭損(Headloss)。

 P_3 是流場中的最低壓力。只要 P_3 高於流體在該溫度的飽和蒸汽壓 (Vapor Pressure) P_v ,即可確保全流場各處都不發生 Cavitation。

意即抑制 Cavitation 之必要條件為
$$\frac{P_3}{\gamma} > \frac{P_v}{\gamma}$$
 ②

代入公式①,得到下式

$$\left(\frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Z_2\right) - \frac{P_V}{\gamma} > \left(Z_3 + \frac{V_3^2}{2g} + h_{L2-3}\right) \dots 3$$

數學式的推演暫停於此。

為了「名詞解釋」的目的,在此先說明公式③中各項的物理意義如下。

$$-. \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Z_2$$
 為泵之 Total Suction Head。

灣

熱流

Α

В

C

D

Ε

臺

灣

熱

流

流 A

Α

В

С

D

E

F 臺灣熱治

二. 為了配合飽和蒸汽壓 Pv 慣用「絕對壓力」, 若 P2 也以絕對壓力計算,則上述之 Suction Head 永遠是正值(Positive)。為強調其永遠是正值而冠以 Positive 的形容詞, 成為 Positive Suction Head。

三. $(\frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Z_2) - \frac{P_v}{\gamma}$ 是 Positive Suction Head 減去蒸汽壓力頭(Vapor Pressure Head)後,是「超過蒸汽壓力頭以上」的「淨值(Net)」。為強調其為淨值而冠以 Net 形容詞,成為 Net Positive Suction Head,全詞縮寫為 NPSH。

$$PSH = \left(\frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Z_2 \right) - \frac{P_v}{\gamma} \qquad \cdots \qquad \textcircled{4}$$

四. $\left(\frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Z_2\right) - \frac{P_v}{\gamma}$ 是該泵安裝在系統管路上,實際 運轉抽/送水流時,在泵入水口中心點的「實際有效 NPSH 值」,命 名為 NPSHa。

$$PSHa = \left(\frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Z_2 \right) - \frac{P_v}{\gamma} \cdots S$$

五. 不等式③改寫為

NPSHa >
$$Z_3 + \frac{V_3^2}{2g} + h_{L2-3}$$

這不等式的物理意義是:「為避免發生 Cavitation, NPSHa 應有低

灣

熱

流

Α

В

C

D

Е

F

臺

灣

熱

流

Α

C

D

Е

F

臺

灣

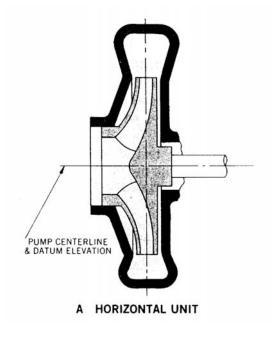
熱

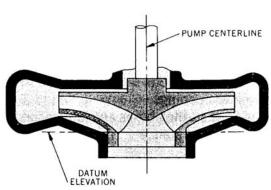
流

限值」。這低限值就是不等式③的右邊三項和,即

$$Z_3 + \frac{V_3^2}{2g} + h_{L2-3}$$

而這三項都是「泵本身的物理性質」,不同的泵可能有不同的值。 這低限值的物理意義是:「為抑制(或避免) Cavitation 發生,這 台泵所需的 NPSH 低限值 1, 這也就是 NPSHr 的定義。即


NPSHr =
$$Z_3 + \frac{V_3^2}{2g} + h_{L2-3}$$


六. 公式⑤與⑥中的 Z2 與 Z3 都是從「任一水平參考面」分別量到點 ②與點③的海拔高度(Elevation),其值當然與參考面的高度位置 絕對相關。NPSH 值也就與參考面的高度位置息息相關了。因此, 有必要約定一個「共同的水平參考面」, 否則該數值毫無意義。

美國水力學會(American Hydraulic Institute,簡稱 AHI)於其 「水力學會標準(Hydraulic Institute Standards)」中,為幾種 型式的泵訂定計算或量測 NPSH 用的「共同的水平參考面」,參考 圖(4)。例如水平端吸泵(Horizontal End Suction Pump)即以其入 水口中心點所在的水平面為參考面,則公式③中的 $Z_2 = 0$ 。

1 2 3 4

圖(4) 美國水力學會(AHI)規定 計算 NPSH 的共同參考面

灣

熱

流

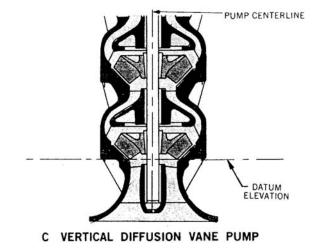
Α

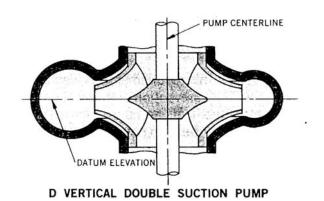
В

C

D

Е


F


臺

灣

熱流

B VERTICAL SINGLE SUCTION PUMP

DATUM ELEVATION OF VARIOUS PUMP DESIGNS

1 2 3 4

七. 若以泵入水口中心點所在的水平面為「共同的水平参考面」,公式⑤與⑥改寫為

臺

灣

熱

流

В

C

D

Е

F

臺

灣

熱流

$$NPSHa = \left(\begin{array}{c} P_2 \\ \hline \gamma \end{array} + \begin{array}{c} V_2^2 \\ \hline 2g \end{array} \right) - \begin{array}{c} P_v \\ \hline \gamma \end{array} \quad \cdots$$

NPSHr =
$$(Z_3 + \frac{V_3^2}{2g} + h_{L2-3})$$

八. 若 NPSHa > NPSHr,則 Cavitation 不發生

這個定理(律)也得到數學證明了!

伍. 系統管路的 NPSHa

請再看圖(3)。

若令泵入水口中心點所在的水平面為「共同的水平參考面」,列出流線上的點①與點②之間的能量方程式為

$$\frac{P_1}{\gamma} + \frac{V_1^2}{2g} - Z_1 - h_{L1-2} = \frac{P_2}{\gamma} + \frac{V_2^2}{2g} \dots 9$$

其中,P1為點①的絕對壓力,也就是大氣壓力Pa。

V1為點①的流動速度,很小,可忽略不計。

h L1-2 為沿著流線從點①流到點②的流動頭損(Headloss),也就 是泵的入水管段的流動頭損。

Ε

灣

熱

灣

熱

流

Α

В

C

D

Е

F

臺

灣

熱流

將公式⑦代入公式⑨中,解得

由公式⑩可知,若要抑制 Cavitation 的發生,就要想辦法提高 NPSHa。公式⑩中的大氣壓力 Pa 與蒸汽壓 Pv 是由上帝控管的,人類無能為力。 提升 NPSHa 就只剩下述兩方向了。

- 一. 降低「抽水升程(Suction Lift)」 即降低公式中的 Z1 值,也就是圖(1)中的 Z1 值。
- 二. 降低泵的入水管段的頭損(Headloss),也就是降低 h L1-2。這段管路的 Headloss 可以數學式表達如下:

$$h_{L1-2} = R_{12} Q^n$$
 …… ① ① 其中,

R12 : 某常數,代表一段管路(含直管、管件、閥件)的流阻(Flow Resistance)。

- n :管內為層流(Lamina Flow)時,n = 1。 管內為亂流(Turbulent Flow)時,n = 2。
- Q : 流經泵入水管段的流量率(Flow Rate),也就是該泵的 「泵水流量率(Pumping Flow Rate)」

灣熱

1 2 3 4

若要降低泵入水管段的頭損,有兩方向,即

1. 降低入水管段的流阻(Flow Resistance),也將是降低公式①中的 R1值。這方法包括下列幾點:

灣

熱

流

Α

В

C

D

Ε

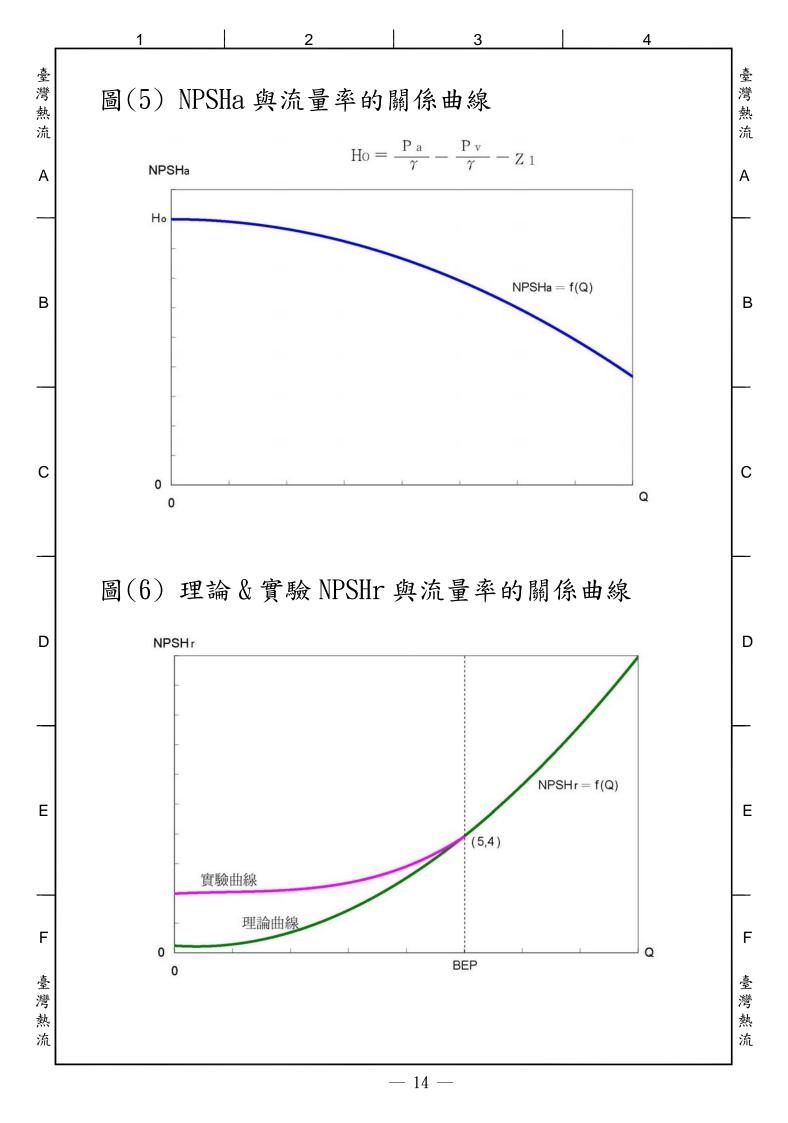
F

臺

熱流

- a. 泵的入水段要儘量「粗、短、直」。
- b. 入水管口改為「鐘形口」,或以「大小頭」擴大至可能的最大口徑。
- c. 若需彎頭,應採用「大半徑的彎頭」。
- d. 若需裝設底閥(Foot Valve),應選用低流阻者。
- 2. 降低或限制流量率

也就是降低公式111中的Q值。把公式111代入公式110即得


$$NPSHa = \left(\begin{array}{c} \underline{P_a} \\ \underline{\gamma} \end{array} - \frac{P_V}{\gamma} - \underline{Z_1} \right) - \underline{R_{12}} \, \underline{Q^n} \quad \cdots \cdots \qquad \boxed{2}$$

若令
$$\left(\frac{P_a}{\gamma} - \frac{P_V}{\gamma} - Z_1\right) = H_o$$
,則 H_o 為常數,

$$NPSHa = H_0 - R_{12} Q^n \quad \cdots \qquad \qquad \boxed{13}$$

証明 NPSHa 是泵水流量率 Q 的「單變數函數」,即 NPSHa = f(Q)。 函數圖形如圖(5)。看函數曲線可知:

泵流量愈大,系統管路之 NPSHa 愈小。

臺灣熱流

C

D

Ε

F

臺

熱

流

济

А

В

С

D

F 臺灣熱

流

陸. 離心泵的 NPSHr

重寫公式⑧如下

NPSHr =
$$(Z_3 + \frac{V_3^2}{2g} + h_{L2-3})$$

為上式中的各項提出「理論論述」與「實驗論述」如下。

- 一. 理論論述
 - 1. Z 3

前面曾假設流線上的點③是泵內部流場中的最低壓點。若某系統管路上的泵運轉中原無 Cavitation 發生,則必定 NPSHa > NPSHr。若 NPSHa 因故而逐漸降低(例如流量率Q逐漸升高)至某低限值(依定義:此低限值即為 NPSHr),則流場中最先發生 Cavitation 的位置就是點③。「理論上」這是個確定點,與其他因素無關。

2. $\frac{V_3^2}{2g}$

 V_3 是點③的流動速度。「理論上」 V_3 與點②的流量率 Q 成正比。 也就是說,可以找到一個比例常數 R_3 ,使得 $\frac{V_3^2}{2g}=R_3\,Q^2$ 。

3. h L2-3

hL2-3 是沿著流線從點②流到點③的流動頭損(Headloss)。每個微

灣

熱

流

Α

В

C

D

Е

F

臺

灣

熱

流

F 臺灣熱流

小管段的頭損與該管段內的流速息息相關。而該流速「理論上」 與流量率 Q 成正比。因此,「理論上」可以找到一個比例常數 R_{23} , 使得 $h_{L2-3}=R_{23}$ Q^n

其中,n=1是層流時,n=2是亂流時。

4. NPSHr 的理論計算式

依上述三點論述,改寫公式⑧為

$$NPSHr = Z_3 + R_3 Q^2 + R_{23} Q^2, RP$$

5. NPSHr 與泵水流量率的理論關係曲線

由公式(4)可知 NPSHr 是泵水流量率 Q 的「單變數函數」,其函數 曲線如圖(6)中之「理論曲線」。看函數曲線可知:

泵水流量率愈大,該泵之 NPSHr 愈大。

二. 實驗論述

1. 實驗測得的 NPSHr 與泵水流量率 Q 之間的關係曲線如圖(6)中的「實驗曲線」所示。請注意「實驗曲線」與「理論曲線」的差異。

2. 無數次的實驗證實,在泵水流量率 Q 大於 BEP (最高效率點)流量 率時,「實驗曲線」與「理論曲線」幾乎完全相同。證實前面的「理 論計算式」很準確。

臺

灣

熱

流

Α

В

C

D

Е

F

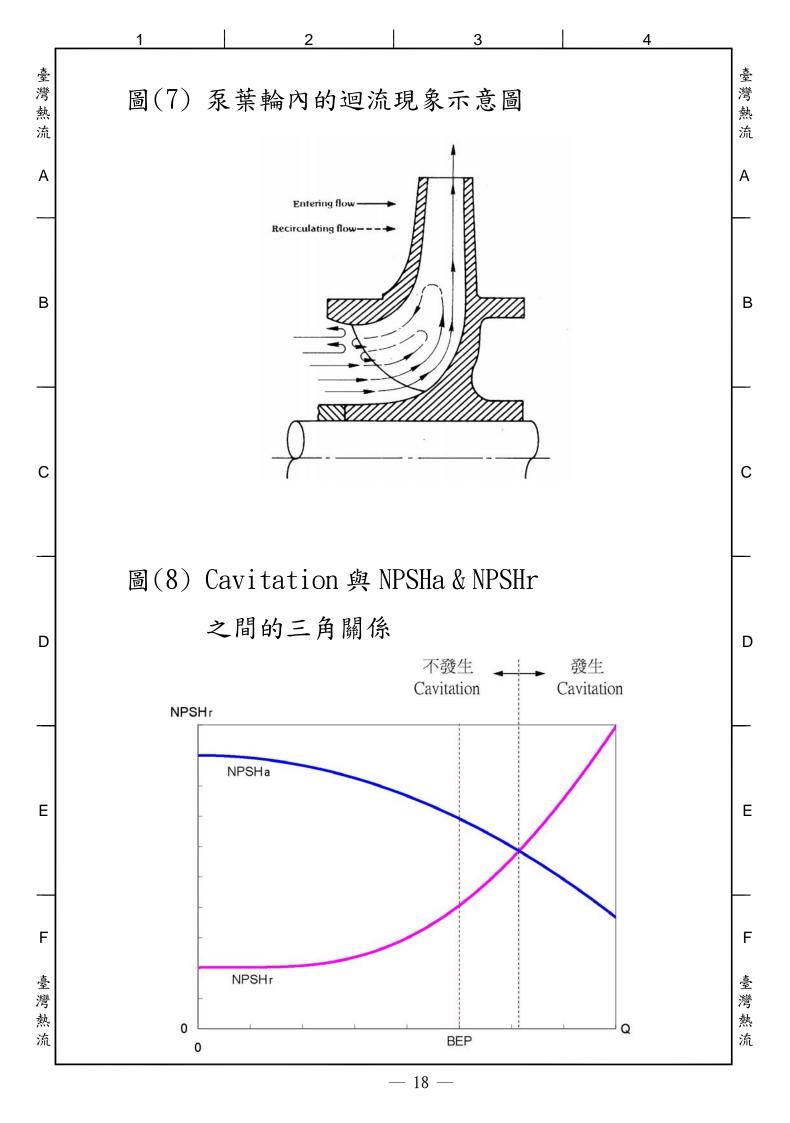
臺

灣

熱

流

- 3. NPSHr 理論曲線與實驗曲線在低流量率的差異頗大,主要肇因於 葉輪內部流場中的「迴流(Recirculation)」現象,如圖(7)。
- Cavitation 與 NPSHa & NPSHr 之間的三角關係 請參考圖(8),思考 Cavitation 與 NPSHa & NPSHr 之間的三角關係。 若 NPSHa > NPSHr,則 Cavitation 不發生 的定律(理)完全在這張曲線圖上表達清楚了。
- 液體溫度如何影響 NPSHa & NPSHr 捌.


謹此以問/答方式論述工程界流行的三個關於 NPSH 的問題。

一. 問:若水溫升高,NPSHa 是否降低?

答:水温愈高,NPSHa 愈低。請看表(1) —— 水的飽和蒸汽表, 即可知水溫愈高,其蒸汽壓Pv愈高。依公式⑦

$$NPSHa = \left(\frac{P_2}{\gamma} + \frac{V_2^2}{2g} \right) - \frac{P_v}{\gamma} \qquad \cdots$$

可知 Pv愈高,NPSHa 愈小。

熱 流

Α

В

С

D

Ε

F

臺灣熱

流

TABLE A.1E

Thermodynamic Properties of Steam^a

表(1) 水的飽和蒸汽壓

TABLE A.1.1

Temp. F.	Press. bf/ sq. in. P	Specific Volume ft ³ /lbm		Internal Energy Btu/lbm			Enthalpy Btu/lbm			Entropy Btu/lbm R			
		Sat. Liquid ^v f	Sat. Vapor v_g	Sat. Liquid u _f	Evap.	Sat. Vapor u _g	Sat. Liquid h _f	Evap.	Sat. Vapor h _g	Sat. Liquid	Evap.	Sat. Vapor	
32.018	0.08866	0.016022	3302	0.00	1021.2	1021.2	0.01	1075.4	1075.4	0.00000	2.1869	2.1869	
35	0.09992	0.016021	2948	2.99	1019.2	1022.2	3.00	1073.7	1076.7	0.00607	2.1704	2.1764	
40	0.12166	0.016020	2445	8.02	1015.8	1023.9	8.02	1070.9	1078.9	0.01617	2.1430	2.1592	
45	0.14748	0.016021	2037	13.04	1012.5	1025.5	13.04	1068.1	1081.1	0.02618	2.1162	2.1423	
50	0.17803	0.016024	1704.2	18.06	1009.1	1027.2	18.06	1065.2	1083.3	0.03607	2.0899	2.1259	
60	0.2563	0.016035	1206.9	28.08	1002.4	1030.4	28.08	1059.6	1087.7	0.05555	2.0388	2.0943	
70	0.3632	0.016051	867.7	38.09	995.6	1033.7	38.09	1054.0	1092.0	0.07463	1.9896	2.0642	
80	0.5073	0.016073	632.8	48.08	988.9	1037.0	48.09	1048.3	1096.4	0.09332	1.9423	2.0356	
90	0.6988	0.016099	467.7	58.07	982.2	1040.2	58.07	1042.7	1100.7	0.11165	1.8966	2.0083	
100	0.9503	0.016130	350.0	68.04	975.4	1043.5	68.05	1037.0	1105.0	0.12963	1.8526	1.9822	
110	1.2763	0.016166	265.1	78.02	968.7	1046.7	78.02	1031.3	1109.3	0.14730	1.8101	1.9574	
120	1.6945	0.016205	203.0	87.99	961.9	1049.9	88.00	1025.5	1113.5	0.16465	1.7690	1.9336	
130	2.225	0.016247	157.17	97.97	955.1	1053.0	97.98	1019.8	1117.8	0.18172	1.7292	1.9109	
140	2.892	0.016293	122.88	107.95	948.2	1056.2	107.96	1014.0	1121.9	0.19851	1.6907	1.8892	
150	3.722	0.016343	96.99	117.95	941.3	1059.3	117.96	1008.1	1126.1	0.21503	1.6533	1.8684	
160	4.745	0.016395	77.23	127.94	934.4	1062.3	127.96	1002.2	1130.1	0.23130	1.6171	1.8484	
170	5.996	0.016450	62.02	137.95	927.4	1065.4	137.97	996.2	1134.2	0.24732	1.5819	1.8293	
180 190	7.515 9.343	0.016509	50.20 40.95	147.97	920.4	1068.3	147.99	990.2	1138.2 1142.1	0.26311	1.5478	1.8109	
200	11.529	0.016570 0.016634	33.63	158.00 168.04	913.3 906.2	1071.3 1074.2	158.03 168.07	984.1 977.9	1142.1	0.27866 0.29400	1.5146 1.4822	1.7932	
210	14.125	0.016034	27.82	178.10	898.9	1074.2	178.14	971.6	1143.9	0.30913	1.4508	1.7762 1.7599	
212	14.698	0.016702	26.80	180.11	897.5	1077.6	180.16	970.3	1150.5	0.30913	1.4308	1.7567	
220	17.188	0.016772	23.15	188.17	891.7	1077.8	188.22	965.3	1153.5	0.31213	1.4201	1.7441	
230	20.78	0.016845	19.386	198.26	884.3	1073.6	198.32	958.8	1157.1	0.32400	1.3901	1.7289	
240	24.97	0.016922	16.327	208.36	876.9	1085.3	208.44	952.3	1160.7	0.35335	1.3609	1.7143	
250	29.82	0.017001	13.826	218.49	869.4	1085.5	218.59	945.6	1164.2	0.35555	1.3324	1.7001	
260	35.42	0.017084	11.768	228.64	861.8	1090.5	228.76	938.8	1167.6	0.38193	1.3044	1.6864	
270	41.85	0.017170	10.066	238.82	854.1	1093.0	238.95	932.0	1170.9	0.39597	1.2771	1.6731	
280	49.18	0.017170	8.650	249.02	846.3	1095.4	249.18	924.9	1174.1	0.40986	1.2504	1.6602	
290	57.53	0.017352	7.467	259.25	838.5	1097.7	259.44	917.8	1177.2	0.42360	1.2241	1.6477	
300	66.98	0.017448	6.472	269.52	830.5	1100.0	269.73	910.4	1180.2	0.42300	1.1984	1.6356	
310	77.64	0.017548	5.632	279.81	822.3	1102.1	280.06	903.0	1183.0	0.45067	1.1731	1.6238	
320	89.60	0.017652	4.919	290.14	814.1	1104.2	290.43	895.3	1185.8	0.46400	1.1483	1.6123	
330	103.00	0.017760	4.312	300.51	805.7	1106.2	300.84	887.5	1188.4	0.47722	1.1238	1.6010	
340	117.93	0.017872	3.792	310.91	797.1	1108.0	311.30	879.5	1190.8	0.49031	1.0997	1.5901	
350	134.53	0.017988	3.346	321.35	788.4	1109.8	321.80	871.3	1193.1	0.50329	1.0760	1.5793	
360	152.92	0.018108	2.961	331.84	779.6	1111.4	332.35	862.9	1195.2	0.51617	1.0526	1.5688	
370	173.23	0.018233	2.628	342.37	770.6	1112.9	342.96	854.2	1197.2	0.52894	1.0295	1.5585	
380	195.60	0.018363	2.339	352.95	761.4	1114.3	353.62	845.4	1199.0	0.54163	1.0067	1.5483	
390	220.2	0.018498	2.087	363.58	752.0	1115.6	364.34	836.2	1200.6	0.55422	0.9841	1.5383	
400	247.1	0.018638	1.8661	374.27	742.4	1116.6	375.12	826.8	1202.0	0.56672	0.9617	1.5284	
410	276.5	0.018784	1.6726	385.01	732.6		385.97	817.2	1203.1	0.57916	0.9395	1.5187	
420	308.5	0.018936	1.5024	395.81	722.5	1118.3	396.89	807.2	1204.1	0.59152	0.9175	1.5091	
430	343.3	0.019094	1.3521	406.68	712.2	1118.9	407.89	796.9	1204.8	0.60381	0.8957	1.4995	
440	381.2	0.019260	1.2192	417.62	701.7	1119.3	418.98	786.3	1205.3	0.61605	0.8740	1.4900	
450	422.1	0.019433	1.1011	428.6	690.9	1119.5	430.2	775.4	1205.6	0.6282	0.8523	1.4806	
460	466.3	0.019614	0.9961	439.7	679.8	1119.6	441.4	764.1	1205.5	0.6404	0.8308	1.4712	
470	514.1	0.019803	0.9025	450.9	668.4	1119.4	452.8	752.4	1205.2	0.6525	0.8093	1.4618	
480	565.5	0.020002	0.8187	462.2	656.7	1118.9	464.3	740.3	1204.6	0.6646	0.7878	1.4524	
490	620.7	0.020211	0.7436	473.6	644.7	1118.3	475.9	727.8	1203.7	0.6767	0.7663	1.4430	
500	680.0	0.02043	0.6761	485.1	632.3	1117.4	487.7	714.8	1202.5	0.6888	0.7448	1.4335	
520	811.4	0.02091	0.5605	508.5	606.2	1114.8	511.7	687.3	1198.9	0.7130	0.7015	1.4145	
540	961.5	0.02145	0.4658	532.6	578.4	1111.0	536.4	657.5	1193.8	0.7374	0.6576	1.3950	
560	1131.8	0.02207	0.3877	557.4	548.4	1105.8	562.0	625.0	1187.0	0.7620	0.6129	1.3749	
580	1324.3	0.02278	0.3225	583.1	515.9	1098.9	588.6	589.3	1178.0	0.7872	0.5668	1.3540	
600	1541.0	0.02363	0.2677	609.9	480.1	1090.0	616.7	549.7	1166.4	0.8130	0.5187	1.3317	
620	1784.4	0.02465	0.2209	638.3	440.2	1078.5	646.4	505.0	1151.4	0.8398	0.4677	1.3075	
640	2057.1	0.02593	0.1805	668.7	394.5	1063.2	678.6	453.4	1131.9	0.8681	0.4122	1.2803	
660	2362	0.02767	0.14459	702.3	340.0	1042.3	714.4	391.1	1105.5	0.8990	0.3493	1.2483	
680	2705	0.03032	0.11127	741.7	269.3	1011.0	756.9	309.8	1066.7	0.9350	0.2718	1.2068	
700	3090	0.03666	0.07438	801.7	145.9	947.7	822.7	167.5	990.2	0.9902	0.1444	1.1346	
05.44	3204	0.05053	0.05053	872.6	0	872.6	902.5	0	902.5	1.0580	0	1.0580	

灣

熱

流

2 3

二. 問:若水溫升高,NPSHr是否升高?

答:

1. 很少人知道這問題的正確答案!若從 NPSHr 的字面定義「為抑制 Cavitation 的發生,泵所需的 NPSH 最小值」去思考,大多數的工程師都回答:「對!水溫愈高, NPSHr 將愈高!」。 他們最直接的思考邏輯推理如下: 灣

熱

流

Α

В

D

Е

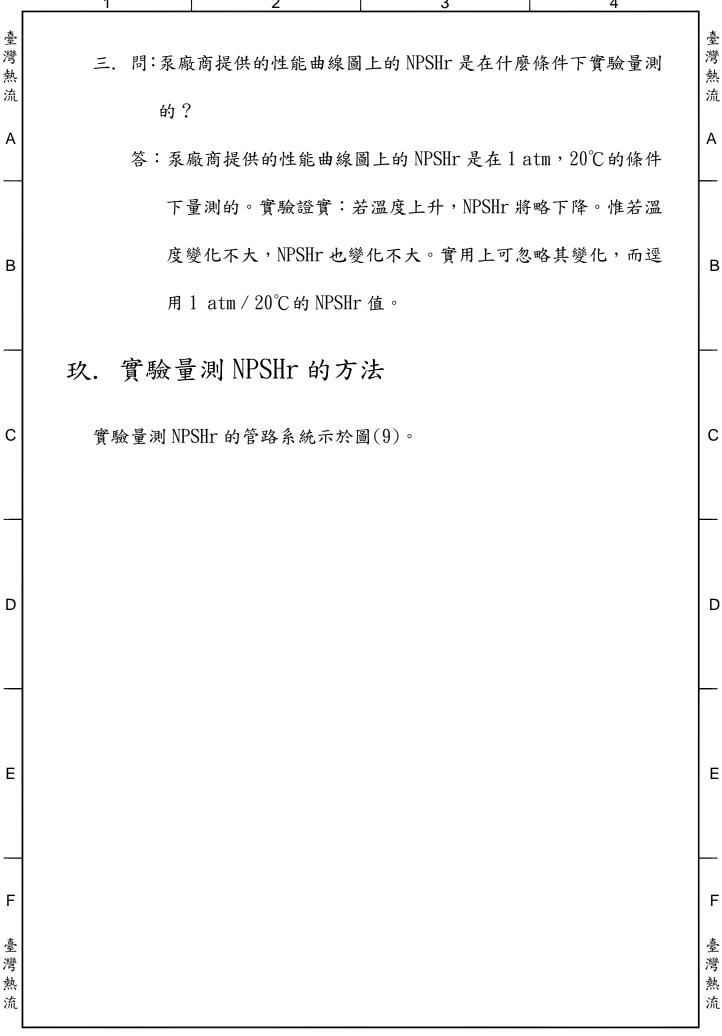
F

臺

灣

熱

流


- a. 水溫愈高,其飽合蒸汽壓 Pv愈高。
- b. 若 Suction Head $(\frac{P_2}{\gamma} + \frac{V_2^2}{2g})$ 愈高,泵內流場中最低 壓點的壓力也將愈高。只要最低壓點的壓力高於蒸汽壓 P_v , 就不會發生 Cavitation。
- c. 因此,若水溫升高了,泵需要更高的 Suction Head 以抑制 Cavitation 的發生。
- d. 結論:水溫愈高,泵之 NPSHr 愈高。

這個結論是錯的!

2. 上述 a~c 的邏輯推理都正確,只有結論(d)卻是錯的。就因為是這樣矛盾,才造成多數工程師的迷思!

豈有此理!邏輯推理論述正確,結論卻錯了!問題出在那裡呢?

	1 2 3 4	_										
臺灣熱流 A	問題出在:上述 a~c 的邏輯推理論述根本與 NPSHr 無關,也 就是「文不對題」。											
	9. 西口然注何明陌弘庥法从八子(6)	-										
	3. 要回答這個問題就應該從公式⑧											
В	NPSHr = $(Z_3 + \frac{V_3^2}{2g} + h_{L2-3})$	В										
	去思考其「底蘊的物理意義」,即											
С	a. Z3與水的溫度有關嗎?答案是:無關。	C										
	b. $\frac{V_3^2}{2g}$ 與水的溫度有關嗎?答案是:無關。											
	c. h L2-3 與水的溫度有關嗎?答案是:有關。											
	因為 h12-3 是沿著流線從泵的入水口中心點②流到最低壓點	D										
D	③的流動頭損(Headloss)。這 Headloss 肇因於流體的黏性											
	(Viscosity)。一般流體溫度愈高,黏性愈小,這段流路的											
	Headloss 也就愈小。											
Е	d. 結論:液體溫度愈高,泵之 NPSHr 愈低。	E										
	這個結論才是正確的!											
F	4. 本問題的答案是:理論與實驗均證實	F										
臺灣熱流	若水溫升高, NPSHr 將稍降低。	臺灣熱流										

臺灣熱流科技股份有限公司

台北市内湖區内湖路2段179巷51號

電話: + 886 2 2792 6898 電郵: fluxtek@ms21.hinet.net 傳真: + 886 2 2792 6060 網址: www.fluxtek.com.tw

崑山熱流設備系統有限公司

崑山市花園路國際藝術村228號106室

電話: +86 512 5782 7898 電郵: fluxsystem@vip.sina.com

傳真:+86 512 5782 7889 網址: www.fluxtek.cn